Metamath Proof Explorer


Theorem dmoprabss

Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion dmoprabss domxyz|xAyBφA×B

Proof

Step Hyp Ref Expression
1 dmoprab domxyz|xAyBφ=xy|zxAyBφ
2 19.42v zxAyBφxAyBzφ
3 2 opabbii xy|zxAyBφ=xy|xAyBzφ
4 opabssxp xy|xAyBzφA×B
5 3 4 eqsstri xy|zxAyBφA×B
6 1 5 eqsstri domxyz|xAyBφA×B