Metamath Proof Explorer


Theorem opabssxp

Description: An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995)

Ref Expression
Assertion opabssxp x y | x A y B φ A × B

Proof

Step Hyp Ref Expression
1 simpl x A y B φ x A y B
2 1 ssopab2i x y | x A y B φ x y | x A y B
3 df-xp A × B = x y | x A y B
4 2 3 sseqtrri x y | x A y B φ A × B