Metamath Proof Explorer


Theorem dmoprab

Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Assertion dmoprab domxyz|φ=xy|zφ

Proof

Step Hyp Ref Expression
1 dfoprab2 xyz|φ=wz|xyw=xyφ
2 1 dmeqi domxyz|φ=domwz|xyw=xyφ
3 dmopab domwz|xyw=xyφ=w|zxyw=xyφ
4 exrot3 zxyw=xyφxyzw=xyφ
5 19.42v zw=xyφw=xyzφ
6 5 2exbii xyzw=xyφxyw=xyzφ
7 4 6 bitri zxyw=xyφxyw=xyzφ
8 7 abbii w|zxyw=xyφ=w|xyw=xyzφ
9 df-opab xy|zφ=w|xyw=xyzφ
10 8 9 eqtr4i w|zxyw=xyφ=xy|zφ
11 2 3 10 3eqtri domxyz|φ=xy|zφ