Metamath Proof Explorer
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstr.1 |
|
|
|
eqsstr.2 |
|
|
Assertion |
eqsstri |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqsstr.1 |
|
| 2 |
|
eqsstr.2 |
|
| 3 |
1
|
sseq1i |
|
| 4 |
2 3
|
mpbir |
|