Metamath Proof Explorer


Theorem eqsstri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)

Ref Expression
Hypotheses eqsstr.1 A=B
eqsstr.2 BC
Assertion eqsstri AC

Proof

Step Hyp Ref Expression
1 eqsstr.1 A=B
2 eqsstr.2 BC
3 1 sseq1i ACBC
4 2 3 mpbir AC