Metamath Proof Explorer


Theorem eqsstri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)

Ref Expression
Hypotheses eqsstr.1 A = B
eqsstr.2 B C
Assertion eqsstri A C

Proof

Step Hyp Ref Expression
1 eqsstr.1 A = B
2 eqsstr.2 B C
3 1 sseq1i A C B C
4 2 3 mpbir A C