Metamath Proof Explorer


Theorem sseq1i

Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sseq1i.1 A=B
Assertion sseq1i ACBC

Proof

Step Hyp Ref Expression
1 sseq1i.1 A=B
2 sseq1 A=BACBC
3 1 2 ax-mp ACBC