Metamath Proof Explorer


Theorem eqsstri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)

Ref Expression
Hypotheses eqsstr.1
|- A = B
eqsstr.2
|- B C_ C
Assertion eqsstri
|- A C_ C

Proof

Step Hyp Ref Expression
1 eqsstr.1
 |-  A = B
2 eqsstr.2
 |-  B C_ C
3 1 sseq1i
 |-  ( A C_ C <-> B C_ C )
4 2 3 mpbir
 |-  A C_ C