Metamath Proof Explorer


Theorem eqsstri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)

Ref Expression
Hypotheses eqsstr.1 𝐴 = 𝐵
eqsstr.2 𝐵𝐶
Assertion eqsstri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 eqsstr.1 𝐴 = 𝐵
2 eqsstr.2 𝐵𝐶
3 1 sseq1i ( 𝐴𝐶𝐵𝐶 )
4 2 3 mpbir 𝐴𝐶