Metamath Proof Explorer


Theorem dmmulsr

Description: Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmmulsr dom𝑹=𝑹×𝑹

Proof

Step Hyp Ref Expression
1 df-mr 𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
2 1 dmeqi dom𝑹=domxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
3 dmoprabss domxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹𝑹×𝑹
4 2 3 eqsstri dom𝑹𝑹×𝑹
5 0nsr ¬𝑹
6 mulclsr x𝑹y𝑹x𝑹y𝑹
7 5 6 oprssdm 𝑹×𝑹dom𝑹
8 4 7 eqssi dom𝑹=𝑹×𝑹