Metamath Proof Explorer


Theorem mulclsr

Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion mulclsr A𝑹B𝑹A𝑹B𝑹

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 oveq1 xy~𝑹=Axy~𝑹𝑹zw~𝑹=A𝑹zw~𝑹
3 2 eleq1d xy~𝑹=Axy~𝑹𝑹zw~𝑹𝑷×𝑷/~𝑹A𝑹zw~𝑹𝑷×𝑷/~𝑹
4 oveq2 zw~𝑹=BA𝑹zw~𝑹=A𝑹B
5 4 eleq1d zw~𝑹=BA𝑹zw~𝑹𝑷×𝑷/~𝑹A𝑹B𝑷×𝑷/~𝑹
6 mulsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹𝑹zw~𝑹=x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹
7 mulclpr x𝑷z𝑷x𝑷z𝑷
8 mulclpr y𝑷w𝑷y𝑷w𝑷
9 addclpr x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
10 7 8 9 syl2an x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
11 10 an4s x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
12 mulclpr x𝑷w𝑷x𝑷w𝑷
13 mulclpr y𝑷z𝑷y𝑷z𝑷
14 addclpr x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
15 12 13 14 syl2an x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
16 15 an42s x𝑷y𝑷z𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
17 11 16 jca x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
18 opelxpi x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z𝑷×𝑷
19 enrex ~𝑹V
20 19 ecelqsi x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z𝑷×𝑷x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹𝑷×𝑷/~𝑹
21 17 18 20 3syl x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹𝑷×𝑷/~𝑹
22 6 21 eqeltrd x𝑷y𝑷z𝑷w𝑷xy~𝑹𝑹zw~𝑹𝑷×𝑷/~𝑹
23 1 3 5 22 2ecoptocl A𝑹B𝑹A𝑹B𝑷×𝑷/~𝑹
24 23 1 eleqtrrdi A𝑹B𝑹A𝑹B𝑹