Metamath Proof Explorer


Theorem addclpr

Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclpr A𝑷B𝑷A+𝑷B𝑷

Proof

Step Hyp Ref Expression
1 df-plp +𝑷=w𝑷,v𝑷x|ywzvx=y+𝑸z
2 addclnq y𝑸z𝑸y+𝑸z𝑸
3 ltanq h𝑸f<𝑸gh+𝑸f<𝑸h+𝑸g
4 addcomnq x+𝑸y=y+𝑸x
5 addclprlem2 A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hxA+𝑷B
6 1 2 3 4 5 genpcl A𝑷B𝑷A+𝑷B𝑷