Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addclpr | |- ( ( A e. P. /\ B e. P. ) -> ( A +P. B ) e. P. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp | |- +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) |
|
2 | addclnq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) |
|
3 | ltanq | |- ( h e. Q. -> ( f( h +Q f ) |
|
4 | addcomnq | |- ( x +Q y ) = ( y +Q x ) |
|
5 | addclprlem2 | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( xx e. ( A +P. B ) ) ) |
|
6 | 1 2 3 4 5 | genpcl | |- ( ( A e. P. /\ B e. P. ) -> ( A +P. B ) e. P. ) |