Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 14-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mulclprlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq | |
|
2 | elprnq | |
|
3 | recclnq | |
|
4 | 3 | adantl | |
5 | vex | |
|
6 | ovex | |
|
7 | ltmnq | |
|
8 | fvex | |
|
9 | mulcomnq | |
|
10 | 5 6 7 8 9 | caovord2 | |
11 | 4 10 | syl | |
12 | mulassnq | |
|
13 | recidnq | |
|
14 | 13 | oveq2d | |
15 | 12 14 | eqtrid | |
16 | mulidnq | |
|
17 | 15 16 | sylan9eqr | |
18 | 17 | breq2d | |
19 | 11 18 | bitrd | |
20 | 1 2 19 | syl2an | |
21 | prcdnq | |
|
22 | 21 | adantr | |
23 | 20 22 | sylbid | |
24 | df-mp | |
|
25 | mulclnq | |
|
26 | 24 25 | genpprecl | |
27 | 26 | exp4b | |
28 | 27 | com34 | |
29 | 28 | imp32 | |
30 | 29 | adantlr | |
31 | 23 30 | syld | |
32 | 31 | adantr | |
33 | 2 | adantl | |
34 | mulassnq | |
|
35 | mulcomnq | |
|
36 | 35 13 | eqtrid | |
37 | 36 | oveq2d | |
38 | 34 37 | eqtrid | |
39 | mulidnq | |
|
40 | 38 39 | sylan9eq | |
41 | 40 | eleq1d | |
42 | 33 41 | sylan | |
43 | 32 42 | sylibd | |