Metamath Proof Explorer


Theorem mulclprlem

Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 14-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulclprlem A𝑷gAB𝑷hBx𝑸x<𝑸g𝑸hxA𝑷B

Proof

Step Hyp Ref Expression
1 elprnq A𝑷gAg𝑸
2 elprnq B𝑷hBh𝑸
3 recclnq h𝑸*𝑸h𝑸
4 3 adantl g𝑸h𝑸*𝑸h𝑸
5 vex xV
6 ovex g𝑸hV
7 ltmnq w𝑸y<𝑸zw𝑸y<𝑸w𝑸z
8 fvex *𝑸hV
9 mulcomnq y𝑸z=z𝑸y
10 5 6 7 8 9 caovord2 *𝑸h𝑸x<𝑸g𝑸hx𝑸*𝑸h<𝑸g𝑸h𝑸*𝑸h
11 4 10 syl g𝑸h𝑸x<𝑸g𝑸hx𝑸*𝑸h<𝑸g𝑸h𝑸*𝑸h
12 mulassnq g𝑸h𝑸*𝑸h=g𝑸h𝑸*𝑸h
13 recidnq h𝑸h𝑸*𝑸h=1𝑸
14 13 oveq2d h𝑸g𝑸h𝑸*𝑸h=g𝑸1𝑸
15 12 14 eqtrid h𝑸g𝑸h𝑸*𝑸h=g𝑸1𝑸
16 mulidnq g𝑸g𝑸1𝑸=g
17 15 16 sylan9eqr g𝑸h𝑸g𝑸h𝑸*𝑸h=g
18 17 breq2d g𝑸h𝑸x𝑸*𝑸h<𝑸g𝑸h𝑸*𝑸hx𝑸*𝑸h<𝑸g
19 11 18 bitrd g𝑸h𝑸x<𝑸g𝑸hx𝑸*𝑸h<𝑸g
20 1 2 19 syl2an A𝑷gAB𝑷hBx<𝑸g𝑸hx𝑸*𝑸h<𝑸g
21 prcdnq A𝑷gAx𝑸*𝑸h<𝑸gx𝑸*𝑸hA
22 21 adantr A𝑷gAB𝑷hBx𝑸*𝑸h<𝑸gx𝑸*𝑸hA
23 20 22 sylbid A𝑷gAB𝑷hBx<𝑸g𝑸hx𝑸*𝑸hA
24 df-mp 𝑷=w𝑷,v𝑷x|ywzvx=y𝑸z
25 mulclnq y𝑸z𝑸y𝑸z𝑸
26 24 25 genpprecl A𝑷B𝑷x𝑸*𝑸hAhBx𝑸*𝑸h𝑸hA𝑷B
27 26 exp4b A𝑷B𝑷x𝑸*𝑸hAhBx𝑸*𝑸h𝑸hA𝑷B
28 27 com34 A𝑷B𝑷hBx𝑸*𝑸hAx𝑸*𝑸h𝑸hA𝑷B
29 28 imp32 A𝑷B𝑷hBx𝑸*𝑸hAx𝑸*𝑸h𝑸hA𝑷B
30 29 adantlr A𝑷gAB𝑷hBx𝑸*𝑸hAx𝑸*𝑸h𝑸hA𝑷B
31 23 30 syld A𝑷gAB𝑷hBx<𝑸g𝑸hx𝑸*𝑸h𝑸hA𝑷B
32 31 adantr A𝑷gAB𝑷hBx𝑸x<𝑸g𝑸hx𝑸*𝑸h𝑸hA𝑷B
33 2 adantl A𝑷gAB𝑷hBh𝑸
34 mulassnq x𝑸*𝑸h𝑸h=x𝑸*𝑸h𝑸h
35 mulcomnq *𝑸h𝑸h=h𝑸*𝑸h
36 35 13 eqtrid h𝑸*𝑸h𝑸h=1𝑸
37 36 oveq2d h𝑸x𝑸*𝑸h𝑸h=x𝑸1𝑸
38 34 37 eqtrid h𝑸x𝑸*𝑸h𝑸h=x𝑸1𝑸
39 mulidnq x𝑸x𝑸1𝑸=x
40 38 39 sylan9eq h𝑸x𝑸x𝑸*𝑸h𝑸h=x
41 40 eleq1d h𝑸x𝑸x𝑸*𝑸h𝑸hA𝑷BxA𝑷B
42 33 41 sylan A𝑷gAB𝑷hBx𝑸x𝑸*𝑸h𝑸hA𝑷BxA𝑷B
43 32 42 sylibd A𝑷gAB𝑷hBx𝑸x<𝑸g𝑸hxA𝑷B