Metamath Proof Explorer
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9eqr.1 |
|
|
|
sylan9eqr.2 |
|
|
Assertion |
sylan9eqr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylan9eqr.1 |
|
| 2 |
|
sylan9eqr.2 |
|
| 3 |
1 2
|
sylan9eq |
|
| 4 |
3
|
ancoms |
|