Metamath Proof Explorer
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9eqr.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
sylan9eqr.2 |
⊢ ( 𝜓 → 𝐵 = 𝐶 ) |
|
Assertion |
sylan9eqr |
⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝐴 = 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylan9eqr.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
sylan9eqr.2 |
⊢ ( 𝜓 → 𝐵 = 𝐶 ) |
3 |
1 2
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) |
4 |
3
|
ancoms |
⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝐴 = 𝐶 ) |