Metamath Proof Explorer


Theorem 3eqtr3g

Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994)

Ref Expression
Hypotheses 3eqtr3g.1 φA=B
3eqtr3g.2 A=C
3eqtr3g.3 B=D
Assertion 3eqtr3g φC=D

Proof

Step Hyp Ref Expression
1 3eqtr3g.1 φA=B
2 3eqtr3g.2 A=C
3 3eqtr3g.3 B=D
4 2 1 eqtr3id φC=B
5 4 3 eqtrdi φC=D