| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) |
| 2 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) |
| 3 |
|
recclnq |
⊢ ( ℎ ∈ Q → ( *Q ‘ ℎ ) ∈ Q ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( *Q ‘ ℎ ) ∈ Q ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
|
ovex |
⊢ ( 𝑔 ·Q ℎ ) ∈ V |
| 7 |
|
ltmnq |
⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑧 ↔ ( 𝑤 ·Q 𝑦 ) <Q ( 𝑤 ·Q 𝑧 ) ) ) |
| 8 |
|
fvex |
⊢ ( *Q ‘ ℎ ) ∈ V |
| 9 |
|
mulcomnq |
⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) |
| 10 |
5 6 7 8 9
|
caovord2 |
⊢ ( ( *Q ‘ ℎ ) ∈ Q → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
| 11 |
4 10
|
syl |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
| 12 |
|
mulassnq |
⊢ ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) |
| 13 |
|
recidnq |
⊢ ( ℎ ∈ Q → ( ℎ ·Q ( *Q ‘ ℎ ) ) = 1Q ) |
| 14 |
13
|
oveq2d |
⊢ ( ℎ ∈ Q → ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) = ( 𝑔 ·Q 1Q ) ) |
| 15 |
12 14
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q 1Q ) ) |
| 16 |
|
mulidnq |
⊢ ( 𝑔 ∈ Q → ( 𝑔 ·Q 1Q ) = 𝑔 ) |
| 17 |
15 16
|
sylan9eqr |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = 𝑔 ) |
| 18 |
17
|
breq2d |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 19 |
11 18
|
bitrd |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 20 |
1 2 19
|
syl2an |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 21 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
| 23 |
20 22
|
sylbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
| 24 |
|
df-mp |
⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 ·Q 𝑧 ) } ) |
| 25 |
|
mulclnq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 ·Q 𝑧 ) ∈ Q ) |
| 26 |
24 25
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 27 |
26
|
exp4b |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
| 28 |
27
|
com34 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
| 29 |
28
|
imp32 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 31 |
23 30
|
syld |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 33 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ℎ ∈ Q ) |
| 34 |
|
mulassnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) |
| 35 |
|
mulcomnq |
⊢ ( ( *Q ‘ ℎ ) ·Q ℎ ) = ( ℎ ·Q ( *Q ‘ ℎ ) ) |
| 36 |
35 13
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( *Q ‘ ℎ ) ·Q ℎ ) = 1Q ) |
| 37 |
36
|
oveq2d |
⊢ ( ℎ ∈ Q → ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) = ( 𝑥 ·Q 1Q ) ) |
| 38 |
34 37
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q 1Q ) ) |
| 39 |
|
mulidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
| 40 |
38 39
|
sylan9eq |
⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = 𝑥 ) |
| 41 |
40
|
eleq1d |
⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 42 |
33 41
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 43 |
32 42
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |