Metamath Proof Explorer


Theorem mulclpr

Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulclpr A𝑷B𝑷A𝑷B𝑷

Proof

Step Hyp Ref Expression
1 df-mp 𝑷=w𝑷,v𝑷x|ywzvx=y𝑸z
2 mulclnq y𝑸z𝑸y𝑸z𝑸
3 ltmnq h𝑸f<𝑸gh𝑸f<𝑸h𝑸g
4 mulcomnq x𝑸y=y𝑸x
5 mulclprlem A𝑷gAB𝑷hBx𝑸x<𝑸g𝑸hxA𝑷B
6 1 2 3 4 5 genpcl A𝑷B𝑷A𝑷B𝑷