Metamath Proof Explorer


Theorem genpprecl

Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpprecl A𝑷B𝑷CADBCGDAFB

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 eqid CGD=CGD
4 rspceov CADBCGD=CGDgAhBCGD=gGh
5 3 4 mp3an3 CADBgAhBCGD=gGh
6 1 2 genpelv A𝑷B𝑷CGDAFBgAhBCGD=gGh
7 5 6 imbitrrid A𝑷B𝑷CADBCGDAFB