Metamath Proof Explorer


Theorem genpelv

Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpelv A𝑷B𝑷CAFBgAhBC=gGh

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 1 2 genpv A𝑷B𝑷AFB=f|gAhBf=gGh
4 3 eleq2d A𝑷B𝑷CAFBCf|gAhBf=gGh
5 id C=gGhC=gGh
6 ovex gGhV
7 5 6 eqeltrdi C=gGhCV
8 7 rexlimivw hBC=gGhCV
9 8 rexlimivw gAhBC=gGhCV
10 eqeq1 f=Cf=gGhC=gGh
11 10 2rexbidv f=CgAhBf=gGhgAhBC=gGh
12 9 11 elab3 Cf|gAhBf=gGhgAhBC=gGh
13 4 12 bitrdi A𝑷B𝑷CAFBgAhBC=gGh