Metamath Proof Explorer


Theorem rexlimivw

Description: Weaker version of rexlimiv . (Contributed by FL, 19-Sep-2011) (Proof shortened by Wolf Lammen, 23-Dec-2024)

Ref Expression
Hypothesis rexlimivw.1 φψ
Assertion rexlimivw xAφψ

Proof

Step Hyp Ref Expression
1 rexlimivw.1 φψ
2 1 adantl xAφψ
3 2 rexlimiva xAφψ