Metamath Proof Explorer


Theorem rexlimivw

Description: Weaker version of rexlimiv . (Contributed by FL, 19-Sep-2011)

Ref Expression
Hypothesis rexlimivw.1 φ ψ
Assertion rexlimivw x A φ ψ

Proof

Step Hyp Ref Expression
1 rexlimivw.1 φ ψ
2 1 a1i x A φ ψ
3 2 rexlimiv x A φ ψ