Metamath Proof Explorer


Theorem rexlimivw

Description: Weaker version of rexlimiv . (Contributed by FL, 19-Sep-2011)

Ref Expression
Hypothesis rexlimivw.1 ( 𝜑𝜓 )
Assertion rexlimivw ( ∃ 𝑥𝐴 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimivw.1 ( 𝜑𝜓 )
2 1 a1i ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 rexlimiv ( ∃ 𝑥𝐴 𝜑𝜓 )