Metamath Proof Explorer


Theorem eqeltrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrdi.1 φ A = B
eqeltrdi.2 B C
Assertion eqeltrdi φ A C

Proof

Step Hyp Ref Expression
1 eqeltrdi.1 φ A = B
2 eqeltrdi.2 B C
3 2 a1i φ B C
4 1 3 eqeltrd φ A C