Metamath Proof Explorer


Theorem eqeltrd

Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses eqeltrd.1 φA=B
eqeltrd.2 φBC
Assertion eqeltrd φAC

Proof

Step Hyp Ref Expression
1 eqeltrd.1 φA=B
2 eqeltrd.2 φBC
3 1 eleq1d φACBC
4 2 3 mpbird φAC