Metamath Proof Explorer


Theorem eqeltrd

Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses eqeltrd.1 ( 𝜑𝐴 = 𝐵 )
eqeltrd.2 ( 𝜑𝐵𝐶 )
Assertion eqeltrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqeltrd.2 ( 𝜑𝐵𝐶 )
3 1 eleq1d ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 2 3 mpbird ( 𝜑𝐴𝐶 )