Metamath Proof Explorer
Description: Substitution of equal classes into membership relation, deduction form.
(Contributed by Raph Levien, 10-Dec-2002)
|
|
Ref |
Expression |
|
Hypotheses |
eqeltrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
eqeltrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
|
Assertion |
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqeltrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
eqeltrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
3 |
1
|
eleq1d |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
4 |
2 3
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |