Metamath Proof Explorer


Theorem eqeltrrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eqeltrrd.1 ( 𝜑𝐴 = 𝐵 )
eqeltrrd.2 ( 𝜑𝐴𝐶 )
Assertion eqeltrrd ( 𝜑𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqeltrrd.2 ( 𝜑𝐴𝐶 )
3 1 eqcomd ( 𝜑𝐵 = 𝐴 )
4 3 2 eqeltrd ( 𝜑𝐵𝐶 )