Metamath Proof Explorer


Theorem eqeltrrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eqeltrrd.1
|- ( ph -> A = B )
eqeltrrd.2
|- ( ph -> A e. C )
Assertion eqeltrrd
|- ( ph -> B e. C )

Proof

Step Hyp Ref Expression
1 eqeltrrd.1
 |-  ( ph -> A = B )
2 eqeltrrd.2
 |-  ( ph -> A e. C )
3 1 eqcomd
 |-  ( ph -> B = A )
4 3 2 eqeltrd
 |-  ( ph -> B e. C )