Metamath Proof Explorer


Theorem eleqtrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eleqtrd.1
|- ( ph -> A e. B )
eleqtrd.2
|- ( ph -> B = C )
Assertion eleqtrd
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eleqtrd.1
 |-  ( ph -> A e. B )
2 eleqtrd.2
 |-  ( ph -> B = C )
3 2 eleq2d
 |-  ( ph -> ( A e. B <-> A e. C ) )
4 1 3 mpbid
 |-  ( ph -> A e. C )