Metamath Proof Explorer


Theorem eleqtrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eleqtrd.1 φAB
eleqtrd.2 φB=C
Assertion eleqtrd φAC

Proof

Step Hyp Ref Expression
1 eleqtrd.1 φAB
2 eleqtrd.2 φB=C
3 2 eleq2d φABAC
4 1 3 mpbid φAC