Metamath Proof Explorer


Theorem eqeltrrd

Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses eqeltrrd.1 φA=B
eqeltrrd.2 φAC
Assertion eqeltrrd φBC

Proof

Step Hyp Ref Expression
1 eqeltrrd.1 φA=B
2 eqeltrrd.2 φAC
3 1 eqcomd φB=A
4 3 2 eqeltrd φBC