Metamath Proof Explorer


Theorem eqcomd

Description: Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994) Allow shortening of eqcom . (Revised by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypothesis eqcomd.1 φA=B
Assertion eqcomd φB=A

Proof

Step Hyp Ref Expression
1 eqcomd.1 φA=B
2 eqid A=A
3 1 eqeq1d φA=AB=A
4 2 3 mpbii φB=A