Metamath Proof Explorer


Theorem eqeq1d

Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)

Ref Expression
Hypothesis eqeq1d.1 φA=B
Assertion eqeq1d φA=CB=C

Proof

Step Hyp Ref Expression
1 eqeq1d.1 φA=B
2 dfcleq A=BxxAxB
3 2 biimpi A=BxxAxB
4 bibi1 xAxBxAxCxBxC
5 4 alimi xxAxBxxAxCxBxC
6 albi xxAxCxBxCxxAxCxxBxC
7 1 3 5 6 4syl φxxAxCxxBxC
8 dfcleq A=CxxAxC
9 dfcleq B=CxxBxC
10 7 8 9 3bitr4g φA=CB=C