Metamath Proof Explorer


Theorem eqeq1dALT

Description: Alternate proof of eqeq1d , shorter but requiring ax-12 . (Contributed by NM, 27-Dec-1993) (Revised by Wolf Lammen, 19-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis eqeq1d.1 φA=B
Assertion eqeq1dALT φA=CB=C

Proof

Step Hyp Ref Expression
1 eqeq1d.1 φA=B
2 dfcleq A=BxxAxB
3 1 2 sylib φxxAxB
4 3 19.21bi φxAxB
5 4 bibi1d φxAxCxBxC
6 5 albidv φxxAxCxxBxC
7 dfcleq A=CxxAxC
8 dfcleq B=CxxBxC
9 6 7 8 3bitr4g φA=CB=C