Metamath Proof Explorer


Theorem eqeq1dALT

Description: Alternate proof of eqeq1d , shorter but requiring ax-12 . (Contributed by NM, 27-Dec-1993) (Revised by Wolf Lammen, 19-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis eqeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion eqeq1dALT ( 𝜑 → ( 𝐴 = 𝐶𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 sylib ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 3 19.21bi ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 bibi1d ( 𝜑 → ( ( 𝑥𝐴𝑥𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) ) )
6 5 albidv ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝐶 ) ) )
7 dfcleq ( 𝐴 = 𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) )
8 dfcleq ( 𝐵 = 𝐶 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )
9 6 7 8 3bitr4g ( 𝜑 → ( 𝐴 = 𝐶𝐵 = 𝐶 ) )