Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
3 |
2
|
biimpi |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 |
|
bibi1 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
5 |
4
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
6 |
|
albi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
7 |
1 3 5 6
|
4syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
8 |
|
dfcleq |
⊢ ( 𝐴 = 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) |
9 |
|
dfcleq |
⊢ ( 𝐵 = 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |