Metamath Proof Explorer


Theorem eleq1d

Description: Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993) Allow shortening of eleq1 . (Revised by Wolf Lammen, 20-Nov-2019)

Ref Expression
Hypothesis eleq1d.1 φA=B
Assertion eleq1d φACBC

Proof

Step Hyp Ref Expression
1 eleq1d.1 φA=B
2 1 eqeq2d φx=Ax=B
3 2 anbi1d φx=AxCx=BxC
4 3 exbidv φxx=AxCxx=BxC
5 dfclel ACxx=AxC
6 dfclel BCxx=BxC
7 4 5 6 3bitr4g φACBC