Metamath Proof Explorer
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
|
|
Ref |
Expression |
|
Hypotheses |
eqeltrrdi.1 |
|
|
|
eqeltrrdi.2 |
|
|
Assertion |
eqeltrrdi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqeltrrdi.1 |
|
2 |
|
eqeltrrdi.2 |
|
3 |
1
|
eqcomd |
|
4 |
3 2
|
eqeltrdi |
|