Metamath Proof Explorer


Theorem eqeltrrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrdi.1 φ B = A
eqeltrrdi.2 B C
Assertion eqeltrrdi φ A C

Proof

Step Hyp Ref Expression
1 eqeltrrdi.1 φ B = A
2 eqeltrrdi.2 B C
3 1 eqcomd φ A = B
4 3 2 eqeltrdi φ A C