Metamath Proof Explorer
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
|
|
Ref |
Expression |
|
Hypotheses |
eqeltrrdi.1 |
|- ( ph -> B = A ) |
|
|
eqeltrrdi.2 |
|- B e. C |
|
Assertion |
eqeltrrdi |
|- ( ph -> A e. C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqeltrrdi.1 |
|- ( ph -> B = A ) |
2 |
|
eqeltrrdi.2 |
|- B e. C |
3 |
1
|
eqcomd |
|- ( ph -> A = B ) |
4 |
3 2
|
eqeltrdi |
|- ( ph -> A e. C ) |