Metamath Proof Explorer


Theorem eleqtrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrdi.1
|- ( ph -> A e. B )
eleqtrdi.2
|- B = C
Assertion eleqtrdi
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eleqtrdi.1
 |-  ( ph -> A e. B )
2 eleqtrdi.2
 |-  B = C
3 2 a1i
 |-  ( ph -> B = C )
4 1 3 eleqtrd
 |-  ( ph -> A e. C )