Metamath Proof Explorer


Theorem eleqtrrdi

Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)

Ref Expression
Hypotheses eleqtrrdi.1
|- ( ph -> A e. B )
eleqtrrdi.2
|- C = B
Assertion eleqtrrdi
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eleqtrrdi.1
 |-  ( ph -> A e. B )
2 eleqtrrdi.2
 |-  C = B
3 2 eqcomi
 |-  B = C
4 1 3 eleqtrdi
 |-  ( ph -> A e. C )