Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eleqtrrdi.1 | |- ( ph -> A e. B ) |
|
eleqtrrdi.2 | |- C = B |
||
Assertion | eleqtrrdi | |- ( ph -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrdi.1 | |- ( ph -> A e. B ) |
|
2 | eleqtrrdi.2 | |- C = B |
|
3 | 2 | eqcomi | |- B = C |
4 | 1 3 | eleqtrdi | |- ( ph -> A e. C ) |