Metamath Proof Explorer


Theorem eleqtrrdi

Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)

Ref Expression
Hypotheses eleqtrrdi.1 φAB
eleqtrrdi.2 C=B
Assertion eleqtrrdi φAC

Proof

Step Hyp Ref Expression
1 eleqtrrdi.1 φAB
2 eleqtrrdi.2 C=B
3 2 eqcomi B=C
4 1 3 eleqtrdi φAC