Metamath Proof Explorer
Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)
|
|
Ref |
Expression |
|
Hypotheses |
eleqtrrdi.1 |
|
|
|
eleqtrrdi.2 |
|
|
Assertion |
eleqtrrdi |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleqtrrdi.1 |
|
| 2 |
|
eleqtrrdi.2 |
|
| 3 |
2
|
eqcomi |
|
| 4 |
1 3
|
eleqtrdi |
|