Metamath Proof Explorer


Theorem eleqtrrdi

Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)

Ref Expression
Hypotheses eleqtrrdi.1 ( 𝜑𝐴𝐵 )
eleqtrrdi.2 𝐶 = 𝐵
Assertion eleqtrrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eleqtrrdi.1 ( 𝜑𝐴𝐵 )
2 eleqtrrdi.2 𝐶 = 𝐵
3 2 eqcomi 𝐵 = 𝐶
4 1 3 eleqtrdi ( 𝜑𝐴𝐶 )