Metamath Proof Explorer


Theorem eqeltrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrdi.1 ( 𝜑𝐴 = 𝐵 )
eqeltrdi.2 𝐵𝐶
Assertion eqeltrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrdi.1 ( 𝜑𝐴 = 𝐵 )
2 eqeltrdi.2 𝐵𝐶
3 2 a1i ( 𝜑𝐵𝐶 )
4 1 3 eqeltrd ( 𝜑𝐴𝐶 )