Metamath Proof Explorer


Theorem 2rexbidv

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006)

Ref Expression
Hypothesis 2ralbidv.1 φψχ
Assertion 2rexbidv φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 2ralbidv.1 φψχ
2 1 rexbidv φyBψyBχ
3 2 rexbidv φxAyBψxAyBχ