Metamath Proof Explorer


Theorem 2rexbidv

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006)

Ref Expression
Hypothesis 2rexbidv.1 φ ψ χ
Assertion 2rexbidv φ x A y B ψ x A y B χ

Proof

Step Hyp Ref Expression
1 2rexbidv.1 φ ψ χ
2 1 rexbidv φ y B ψ y B χ
3 2 rexbidv φ x A y B ψ x A y B χ