Metamath Proof Explorer


Theorem rexbidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019)

Ref Expression
Hypothesis ralbidv.1 φψχ
Assertion rexbidv φxAψxAχ

Proof

Step Hyp Ref Expression
1 ralbidv.1 φψχ
2 1 adantr φxAψχ
3 2 rexbidva φxAψxAχ