Metamath Proof Explorer


Theorem rexbidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019)

Ref Expression
Hypothesis rexbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion rexbidv
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 rexbidva
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )