Metamath Proof Explorer


Theorem elab3

Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000) (Revised by AV, 16-Aug-2024)

Ref Expression
Hypotheses elab3.1 ψAV
elab3.2 x=Aφψ
Assertion elab3 Ax|φψ

Proof

Step Hyp Ref Expression
1 elab3.1 ψAV
2 elab3.2 x=Aφψ
3 2 elab3g ψAVAx|φψ
4 1 3 ax-mp Ax|φψ