Metamath Proof Explorer


Theorem elab3g

Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elab3g.1 x=Aφψ
Assertion elab3g ψABAx|φψ

Proof

Step Hyp Ref Expression
1 elab3g.1 x=Aφψ
2 1 elabg Ax|φAx|φψ
3 2 ibi Ax|φψ
4 pm2.21 ¬ψψAx|φ
5 3 4 impbid2 ¬ψAx|φψ
6 1 elabg ABAx|φψ
7 5 6 ja ψABAx|φψ