Metamath Proof Explorer


Theorem elrabi

Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017) Remove disjoint variable condition on A , x and avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Aug-2024)

Ref Expression
Assertion elrabi A x V | φ A V

Proof

Step Hyp Ref Expression
1 dfclel A x | x V φ y y = A y x | x V φ
2 df-clab y x | x V φ y x x V φ
3 simpl x V φ x V
4 3 sbimi y x x V φ y x x V
5 clelsb1 y x x V y V
6 4 5 sylib y x x V φ y V
7 2 6 sylbi y x | x V φ y V
8 eleq1 y = A y V A V
9 8 biimpa y = A y V A V
10 7 9 sylan2 y = A y x | x V φ A V
11 10 exlimiv y y = A y x | x V φ A V
12 1 11 sylbi A x | x V φ A V
13 df-rab x V | φ = x | x V φ
14 12 13 eleq2s A x V | φ A V