Metamath Proof Explorer


Theorem rspceov

Description: A frequently used special case of rspc2ev for operation values. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion rspceov CADBS=CFDxAyBS=xFy

Proof

Step Hyp Ref Expression
1 oveq1 x=CxFy=CFy
2 1 eqeq2d x=CS=xFyS=CFy
3 oveq2 y=DCFy=CFD
4 3 eqeq2d y=DS=CFyS=CFD
5 2 4 rspc2ev CADBS=CFDxAyBS=xFy