Metamath Proof Explorer


Theorem rspc2ev

Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)

Ref Expression
Hypotheses rspc2v.1 x = A φ χ
rspc2v.2 y = B χ ψ
Assertion rspc2ev A C B D ψ x C y D φ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x = A φ χ
2 rspc2v.2 y = B χ ψ
3 2 rspcev B D ψ y D χ
4 3 anim2i A C B D ψ A C y D χ
5 4 3impb A C B D ψ A C y D χ
6 1 rexbidv x = A y D φ y D χ
7 6 rspcev A C y D χ x C y D φ
8 5 7 syl A C B D ψ x C y D φ